Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
T. V. Sundar, ${ }^{\text {a }}$ V. Parthasarathi, ${ }^{\text {a }}$ *
K. Sarkunam, ${ }^{\text {b }}$ M. Nallu, ${ }^{\text {b }}$
B. Walfort ${ }^{\text {c }}$ and H. Lang ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India,
${ }^{\text {b }}$ Department of Chemistry, Bharathidasan University, Tiruchirappalli 620024 , India, and ${ }^{\text {c }}$ Lehrstuhl Anorganische Chemie, Institut für Chemie, Fakultät für Naturwissenschaften, Technische-Universität Chemnitz, Straße der Nationen 62, D-09111 Chemnitz, Germany

Correspondence e-mail: vpsarati@yahoo.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.026$
$w R$ factor $=0.071$
Data-to-parameter ratio $=19.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-[(2,4-Dichlorobenzoyl)methyl]-4-(N,N-dimethylamino)pyridinium bromide

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{Br}^{-}$, the angle between the least-squares planes of the dichlorophenyl moiety and the pyridine ring is $20.23(9)^{\circ}$. The molecular packing is mainly influenced by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen-bond interactions. The molecules form an extended chain along the b axis, through $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds.

Comment

4-Dimethylaminopyridine (DMAP) is an excellent catalyst for a variety of synthetic transformations under mild conditions (Prabakaran et al., 2001, and references therein; Sundar et al., 2004). In continuation of our work, the structure determination of the title compound, (I), was undertaken.

A perspective view of the molecule of (I), with the atomic numbering scheme, is shown in Fig. 1. The bond lengths and angles in (I) are comparable to those reported in related structures (Sundar et al., 2004). The angle between the leastsquares planes of the dimethylamine moiety and the pyridine ring is $7.37(13)^{\circ}$. The angle between the least-squares planes of the dichlorophenyl moiety and the pyridine ring is $20.23(9)^{\circ}$, a value that is much less than those [81.01 (11) and $78.64(13)^{\circ}$] observed in the related structures (Sundar et al., 2004). This drastic conformational change may be due to the additional substitution of a Cl atom at the meta position of the phenyl ring.

An interesting feature of the pyridinium systems is that they have a substantial degree of quinoidal character, since the bond lengths C2-C3 [1.348 (3) Å] and C5-C6 [1.356 (3) Å] are significantly shorter than those observed for $\mathrm{C} 3-\mathrm{C} 4$ [1.422 (3) \AA] and $\mathrm{C} 4-\mathrm{C} 5[1.411$ (3) \AA]. The bond length $\mathrm{C} 4-$ $\mathrm{N} 2[1.340(3) \AA$] is intermediate between typical $\mathrm{C}-\mathrm{N}$ singleand double-bond distances (1.465 and 1.239 Aं; Allen et al., 1987), indicating significant conjugation. The sums of the bond angles around N1 and N2 are equal to 360.0°. Hence, there is no evidence for an $s p^{3}$ lone pair.

The molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds into continuous infinite chains running along the b axis (Fig. 2). Atoms C1 and C15 act as hydrogen-bond donors and form $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions (Table 1). The relatively short

Received 1 November 2004 Accepted 10 November 2004 Online 20 November 2004
$\mathrm{C} 8 \cdots \mathrm{Cl} 2^{\text {iv }}$ contact of 3.843 (3) \AA [symmetry code: (iv) $1+x, y$, z] may indicate a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond, the $\mathrm{H} 8 C \cdots \mathrm{Cl} 2^{\text {iv }}$ distance being $2.94 \AA$.

Experimental

A solution of 2,4-dichlorophenacyl bromide ($2.0 \mathrm{~g}, 4 \mathrm{mmol}$) and DMAP ($0.5 \mathrm{~g}, 4 \mathrm{mmol}$) in dry acetone was refluxed for 30 min . After cooling to room temperature (303 K), the solid that separated was filtered off and washed with dry acetone to give the stable salt (I) (m.p. 534 K), which was recrystallized from ethanol.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=390.10$
Monoclinic, $P 2_{1} / n$
$a=9.6148$ (16) A
$b=8.9986(16) \AA$
$c=19.437$ (3) \AA
$\beta=101.399(5)^{\circ}$
$V=1648.5(5) \AA^{3}$
$Z=4$
$D_{x}=1.572 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation

Cell parameters from 938 reflections
$\theta=2.5-29.1^{\circ}$
$\mu=2.82 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.60 \times 0.40 \times 0.30 \mathrm{~mm}$

Data collection

Bruker SMART CCD 1K diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Siemens, 1996)
$T_{\text {min }}=0.250, T_{\text {max }}=0.430$
30507 measured reflections
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.071$
$S=1.05$
3638 independent reflections
3067 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=27.1^{\circ}$
$h=-12 \rightarrow 12$
$k=0 \rightarrow 11$
$l=0 \rightarrow 24$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0356 P)^{2}\right. \\
&+0.6372 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.46 \mathrm{e} \AA^{-3}
\end{aligned}
$$

638 reflections
190 parameters
H -atom parameters constrained

Figure 1
A view of the asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary radii.

Figure 2
The crystal packing for (I), showing the linkage of ions by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (dashed lines).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Prabakaran, P., Thomas Muthaiah, P., Nallu, M., Sathiskumar, V., Bocelli, G. \& Rifhi, L. (2001). J. Chem. Res. (S), pp. 248-249.
Sundar, T. V., Parthasarathi, V., Sarkunam, K., Nallu, M., Walfort, B. \& Lang, H. (2004). Acta Cryst. C60, o464-o466.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

